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Increasing Lunar Activities
• Civil and commercial space activities 

on the Moon are expected to increase 
in the coming years

• Landing areas may be closely-spaced
• Areas of common commercial interest, 

such as the South Pole
• Establishing commercial enterprises may 

require multiple landings in the same area
• For example, water propellant extraction 

could require harvesters, processors, 
storage tanks, etc.
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The Problem with Regolith

• Landing and launch operations produce high-
velocity, fine, abrasive particles

• Can cause damage to nearby hardware and 
infrastructure

• Could disturb nearby resources, historic sites, or 
scientific sites

• Particles can even be ejected into Lunar orbit, 
causing damage to incoming landers or orbiting 
spacecraft
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The Need for Pads

• Landing and launch pads can 
reduce or mitigate regolith ejecta 

• Landing pads can also provide a 
safe, smooth, navigable landing 
surface for landers

• Reduces risk to landing spacecraft
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System Objectives

• Reduce or eliminate ejecta during landing or 
launching

• Withstand spacecraft forces
• Allow reuse
• Survive the Lunar environment
• Enable site location by incoming spacecraft

• Construct infrastructure
• Verify completed infrastructure
• Deployable in a single launch
• Native power system
• Survive the Lunar environment
• Require minimal processing of regolith

Landing/Launch Pad Construction System
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System Selection
• Based on these objectives, the best 

architecture is:
• A pad made of regolith sintered with microwaves

• In-situ microwave sintering requires very little 
processing of the regolith

• Microwaves can be tuned to sinter regolith below 
the surface

• A construction system based on JPL’s ATHLETE 
robot

• ATHLETE design is at a fairly high TRL
• Flexibility of ATHLETE architecture allows 

construction of 3D pad features, swappable tools, 
ability to inspect completed pad
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Preliminary Landing Pad Design
• Pad diameter of 15 m x 0.5 m deep

• Approximately 3x the size of CLPS-class landers
• Seams for thermal expansion and stress relief
• Ejecta shield to contain excess dust and ejecta
• Lightly sintered dust mitigation area between pad 

and ejecta shield
• Egress point for construction robot and spacecraft
• Landing beacon
• Optical target markings and reflectors
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Launch Pad Design Concepts

• Launch pad infrastructure is more involved than landing pad
• Thermal loading is higher due to spacecraft engine ignition on surface
• Additional mechanisms, such as fuel lines and verticators, may also be 

necessary
• Sintered regolith can be used to construct launch pad structure

• Will likely require additional thermal mitigation features and exhaust 
chutes
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The ATHLETE Architecture
• ATHLETE is a six-limbed rover chassis

• Each limb is equipped with a wheel and camera
• Each limb can articulate individually

• Rolling traverse, walking, or precision motion

• ATHLETE would be equipped with on-
board power, sensor suite, and 
construction tool kit

• Construction and inspection will be 
performed autonomously or by 
teleoperators 
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The Lander

• Construction architecture will also include a lander for the 
ATHLETE robot

• The Lander will:
• Act as the interface between the ATHLETE and the launch vehicle
• Protect the ATHLETE during cruise to the Moon
• Provide landing and deployment capabilities for the ATHLETE on the 

Lunar surface
• Act as thermal protection for the ATHLETE during the Lunar night
• Generates power and provides charging for the ATHLETE
• Act as a communications relay between ATHLETE and teleoperators
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Concept of Operations
• Lander and ATHLETE deploy on Lunar surface
• ATHLETE inspects and prepares landing area
• ATHLETE sinters landing area and constructs 

berms
• Pad sintering will take ~6 months of sunlight

• ATHLETE inspects and repairs pad before and 
after each spacecraft landing

• ATHLETE returns to Lander as needed for 
thermal protection and battery charging
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Future Work

• Quantify mechanical properties of sintered Lunar regolith
• Preferably actual regolith from polar regions
• Verify feasibility of sintering at depth

• Further launch and landing pad design and perform scale tests 
to verify strength and thermal characteristics and ejecta 
mitigation

• Further the design of the ATHLETE and perform functional tests 
in regolith simulant

• Further the design of the Lander and perform functional tests
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Questions?
“Plan B”

NASA (1972). Apollo 17 photograph AS17-134-20425.  Available at: https://www.lpi.usra.edu/lunar/samples/apollo/tools/
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• Heating versus input power increases sharply 
at around 400OC
• Exploring possibilities for preheating regolith

• Input power to sinter pad with drop to 60% 
power at 400°C
• 15 m diameter, 0.5 m deep pad

• Approximately 160 Tonnes of Regolith
• Heating from 100°C to 1250°C

• 12.9 kW with 6 months of light
• Assuming: No depth loss, 70% Electrical to Microwave 

efficiency, 1.8 g/cc Regolith Density, 1100 J/kg*K Average 
Specific Heat

Power Analysis for Regolith Heating

[Barmatz]
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Strength Analysis
Velocity After 
Breaking (m/s)

Thruster Cutoff 
Height (m)

Impact Velocity 
(m/s)

KE @ 5000 kg 
(kJ)

Impact Force @ 12.5 
cm Compression (kN)

Pressure @ 0.5 m^2 
Contact Area (MPa)

1 100 18.00 810 6480 12.96
2 100 36.00 3240 25920 51.84
3 100 54.00 7290 58320 116.64
4 100 72.00 12960 103680 207.36
5 100 90.00 20250 162000 324
1 50 12.73 405 3240 6.48
2 50 25.46 1620 12960 25.92
3 50 38.18 3645 29160 58.32
4 50 50.91 6480 51840 103.68
5 50 63.64 10125 81000 162
1 30 9.86 243 1944 3.888
2 30 19.72 972 7776 15.552
3 30 29.58 2187 17496 34.992
4 30 39.44 3888 31104 62.208
5 30 49.30 6075 48600 97.2
1 10 5.69 81 648 1.296
2 10 11.38 324 2592 5.184
3 10 17.08 729 5832 11.664
4 10 22.77 1296 10368 20.736
5 10 28.46 2025 16200 32.4

Maximum Pressure:
84 MPa
Green: 

Pressure Well Below 
Maximum

Yellow:
Pressure Above Half 

Maximum
Red:

Pressure Over 
Maximum
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Notes:

Impact force applies on 
the lander

Assumption that entire 
0.5m^2 lander contacts 
the pad at once

Analysis is first-order 
approximation



Operating environment
● Lunar surface day 

temperatures:
○ 0° latitude: 193°C
○ 30° latitude: 107°C
○ 60° latitude: 58°C
○ 75° latitude: 8°C

● Lunar surface night 
temperatures:
○ 0° latitude: -150°C
○ >85% latitude: -233°C

Thermal Analysis
Available technology
● Low temperature electronics

○ -55°C to +125°C (COTS)
○ No issue for lunar day operations

● Space qualified batteries
○ -50°C to 40°C
○ Current research into high temperature 

batteries (Solid State Ceramic Oxide) with
operating temperatures > 400°C

● Michelin Tweel (special purpose wheel)
○ -233°C to °125°C
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Operating Summary
● ATHLETE rover can operate normally during lunar days
● ATHLETE rover has limited resistance to high bandwidth thermal cycles

Thermal requirements
● ATHLETE rover needs to be functional after lunar night
● Thermal cycling to be limited to ensure appropriate life expectancy of rover

Potential solutions
● Thermal protection doghouse coupled with Advanced Stirling Radioisotope Generator 

(ASRG) or other heat sources
● Heated Lunar ground penetrator power storage (Ulamec, 2010)

Preliminary Analysis
● First analysis indicates best strategy is to “wake up” rover, not heat & insulate

Thermal Analysis
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Note: Analysis is a 
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